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A propositional calculus for quantum mechanical systems is presented which 
formalizes "sequential" connectives "and then" and "or then" for yes-no 
experiments in the framework of complex Hilbert space. Properties of these 
connectives are compared with some well-known lattice-theoretical results in 
quantum logic. Probabilities and objectivization versus the Copenhagen inter- 
pretation are discussed in connection with Young's two-slit experiment. 

1. INTRODUCTION 

The lattice-theoretical results obtained by Jauch (1968) and Piron 
(1964, 1976) and the quantum-logical approach based on dialog semantics 
developed by Mittelstaedt (1978) have shown that the lattice Lq of sub- 
spaces of a complex Hilbert space H is a good candidate to model the 
propositional logic of a quantum-mechanical system: subspaces and their 
projections P, Q .... represent measurable properties of the system and the 
usual lattice-theoretical constants/~ (infimum) and V (supremum), which 
in H have the meaning of intersection and join, are interpreted as the 
connectives "and" and "or"; and the relation <,  represented in H by 
inclusion, takes the role of logical implication between propositions. Since 
Lq is not a distributive lattice, and so afort ior i  not Boolean, certain 
formulas from classical logic are no longer valid. An important implication 
no longer generally true is 

P<(QAP)+(Q• 
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This special case of distributivity is also closely related to the possibility (or 
failure, see below, Section 5) to objectivize quantum-mechanical proper- 
ties, e.g., in the sense that a system possesses, at least with a certain 
probability, a property P independent of any measurement of P. 

In this way, quantum logic is closely connected with a suitable 
probability theory, and both have to stand up to the problem of objectivity 
versus the most popular nonobjectivistic alternative: the Copenhagen 
interpretation. 

Since 1959, Mittelstaedt (1959) has outlined and developed in detail a 
quantum logic (QL) which is complete and consistent with respect to 
Lorenzen's dialog semantics (Stachow, 1976), and which fits together well 
with a widely accepted notion of quantum probability theory (Jauch, 
1968). Furthermore, his restrictive calculus Qeff of effective QL permits an 
objectivistic interpretation of quantum-theoretical propositions and t h e i r  
probabilities. 

The present paper is written in this spirit. We propose, however, a 
propositional calculus different from Qeff: the algebra of sequential events, 
modeled by projections in H, but with new connectives 1-] ("and then") 
and II ("or then"). These are derived from the spectral resolution of the 
(unnormalized) conditional probability operator PQP (for pure state) in 
the following way: PRQ is the projection onto the range (support) of 
PQP, a definition reminiscent of J. von Neumann's famous projection rule 
(1955, pp. 200-201). Then II is introduced by 

PI IQ:=(P•177 • 

• denoting the orthocomplement in H, and a "material implication" ~ is 
defined by 

P--~Q:=P• IQ 

P[-IQ, PIIQ, and P~Q are projections, i.e. possible properties of a 
system, not just observables like PQP. It turns out that ~ is exactly 
Mittelstaedt's "material quasi-implication" (1970, 1972; see also 
Hardegree, 1976, and further references quoted there). 

A system of projections closed under [--], II, 4 ,  • will be called a 
sequential algebra (of propositions, yes-no statements, or projections). 
This algebra is not a lattice with respect to <,  rq, ii.  Nevertheless, it 
shares all the properties of Qeff except for two rules which will be shown to 
be equivalent to general commensurability and thus to classical logic. 
Therefore, it is imperative to sacrifice them. 
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But we shall gain something, too. The above-mentioned special case of 
(sub-) distributivity becomes true again: 

p < Q[--qp + Q • 

This inclusion for all P and Q permits the objectivization which led to a 
contradiction in Boolean logic: in the example of Young's two-silt-experi- 
ment we may again say (in our "sequential logic") that if a photon hits the 
screen behind the two slits, it has passed before through exactly one of the 
two (which one was actually chosen is known with a certain probability 
only). 

This may sound provocative for Copenhagenians; it does not, how- 
ever, contradict the well-known phenomenon of interference. This point is 
discussed in Section 5. 

It is hoped that the approach sketched in this paper is well adapted to 
the intrinsic nature of quantum events, even though it digresses one step 
further from classical propositional logic and even from a calculus as 
successful as Mittelstaedt's Qeff. 

2. SEQUENTIAL EVENTS 

Let P and Q be two projections in a complex Hilbert space H. 
Because of the one-to-one correspondence between projections and their 
ranges, we denote the range of P by P as well, so that 

P x  ~ x 

and 

x E P  

have the same meaning. If P and Q do not commute, PQ and QP are not 
projections any more, not even "observables," so that in general no 
physical meaning can be given to these products. In order to interpret the 
intersection P A  Q and the join P V Q as propositions derived from P and 
Q, we go back to yon Neumann's  original projection rule, and apply this to 
the conditional probability operator PQP. Let Eo(PQP ) denote the null 
space of PQP: 

E o (PQP) = { x ~ H[PQPx = 0 } 
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2.1. Definition. The orthocomplement of Eo(PQP ), the support or 
range of PQP, will be written as PRQ:  

read: " P  and then Q." 

It follows immediately from ( x, PQPx ) = J J PQx)l 2, that 

PQPx=O iff QPx--O 

Now the following representation of Eo(PQP)= Eo(QP ) is easily estab- 
lished: 

2.2. Theorem. For all projections P, Q in H 

Eo(PQP) = P • • 

where V may be equivalently replaced by + .  

Proof. See Hardegree (1976), p. 62. 

2.3. Corollary. 

P ~ Q = P A ( P ~ V Q ) .  

Corollary 2.3 gives a justification for our reading of PrqQ as " P  and then 
Q";  for if we interpret the right-hand side in (2.3) classically, we see that 
PF-]Q is true iff P is true and it is true that Q follows "materially" form P. 
It is then clear how to define P U Q  " P  or then Q," and a "quasi-implica- 
tion" or "conditional implication" P---~Q: 

2.4. Definitions. For all projections P, Q in H put 

PI IQ:=(P•177 • 

= Eo(P • •  J_) = { xl Q z p  • = 0) 

= P V ( P •  

p---~Q : = p -LI IQ 

= Eo(PQ •  = {xlQ • = 0 )  

= P •  

"P--+Q" can be read as follows: "P---~Q is true iff either P • is true or the 
occurrence of the yes outcome of P leaves the system in a state that makes 
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true Q. In other words, it is true that P quasi-implies Q iff either P • is true 
or the conditional probability of Q given P is equal to 1." (cf. Beltrametti 
and Cassinelli, 1977, p. 378)--hence the name "material conditional," e.g., 
in Hardegree (1976). We shall, in the sequel, add the adjective "sequential" 
whenever we mean m, L J, or -% in contrast to the "classical" A,  V, or 
material implication. 

2.5. Definition. A family of projections in H which is dosed under 
finite applications of ['-], El, -% and orthocomplementation is called a 
sequential algebra (of events, properties, propositions). 

A sequential algebra is closed also with respect to the logical connectives 
A and V: 

2.6. Lemma. For projections P, Q in H 

P A Q = P R ( P •  IQ)= Q[q(Q• IP) 

P V Q = P I  I(P• QI I(Q• 

Proof From P<<,PVQ it follows that P V Q - P = ( P V Q ) A P  •  
P • The rest is obvious. [] 

These identities display a curious dual symmetry to the formulas in 
Corollary 2.3 and Definitions 2.4. Moreover, we may interpret the meet of 
two projections, even if they do not commute, as: P A Q  holds if and only 
if: first P, and then Q follows (materially) from P. 

A corresponding operational understanding of sequential connectives 
in a more general framework of dialog semantics has been given in a 
forthcoming article by E. -W. Stachow. In this way, controversies in 
connection with the interpretation of the subspaces P A  Q can be avoided 
(cf. the concise summary in Jammer, 1974, pp. 353-361). The meet and 
join can also be expressed in terms of the spectral measure of the 
observable PQP: 

2.7. Theorem. For all projections P, Q in H, 

P A Q = EI( PQP )= E,( QPQ ) 

where E~ is the respective projection onto the eigenspace with the eigen- 
value 1. 

Proof x E EI(PQP ) iff PQPx = x. From [[xl[ 2 = (PQPx, x )  = [[ OPxll z 
< IlexllZ<< flxll 2 we see that Ilexll--IIx[I, i.e., x ~ P ,  and also QPx--x;  and 
thus together with Px = x that Qx = x. The converse is evident. [] 
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2.8. Corollary. 
PVQ = E~-(? • • • 

PVQ >~PI IQ 

PAQ <P[TQ 

Before entering a deeper study of sequential events, let us briefly 
discuss some differences between the observable QPQ and the property 
Q[-qP. 

Prima facie, both operators are connected with the notion of a 
succession or sequential order: Q comes somehow prior to P in the 
observation of a physical system. More detailed, but still only informally 
discussed, we may perhaps fix ideas and get a feeling about the difference 
as follows (assuming discrete spectra): the equality QPQ~=AqJ, or 
(Q~/,PQ~) =~11~112,~>0, may be read like this: ff is an eigenstate (objec- 
tive property) of the observable QPQ and in this state ~, the attribute: "the 
system has property P after property Q has been measured" yields or is 
observed at a value ~ > 0. 

It follows tp E R(QPQ). For  this ~, Q[~P~--- ~, i.e., "the system is such 
that property P after property Q will show," or "+ is objective with respect 
to QPQ and with a positive ~" whose exact value does not matter. So 
Q[-qP decides [von Neumann's  term, see von Neumarm (1955), p. 254] that 
QPQ lies somewhere in (0, 1], whereas QPQ gives the special realization or 
measurement. Hence, QPQ contains more specific information on the 
system; QF]P only indicates if a positive measurement on QPQ is made or 
not. QI-]P is a possible compound property of the system to be decided in 
a yes -no  experiment. QPQ, in contrast, can express more fine-structure 
information of the system by way of its spectral decomposition. 

The observables Q[--]P and QPQ are commensurable: 

QRP.QPQ = QPQ.QVqP= QPQ 

which means: a joint measurement, although simultaneously possible, does 
not yield more information than QPQ can already give. 

We shall take up this discussion again at the end of this paper, in 
Section 5, when probabilities enter the description of quantum mechanical 
systems. 

3. T H E  LOGIC OF SEQUENTIAL EVENTS 

It is well known that for commuting projections, the above connec- 
tives [-1, II, ---> reduce to the classical A,  V,  and material implication. Let 
us give a sample of criteria for commutativity of two projections P, Q in H. 
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3.1. Theorem. The following statements are equivalent: 
(1) PO = o e  
(2) e ~ ( Q ~ e ) = i ~  
(3) P < ( Q ~ P )  
(4) P A Q = e r - I Q  
(5) e V Q = P L I Q  
(6) el-qQ = Ql- le  
(7) el__lQ= Ql l e  
(8) PQP= QPQ 
(9) Q < P I I Q  
(10) Q >>- PI--IQ 

Proof The equivalence of (1)-(5) has been proved by several authors 
(see, e.g., Piton, 1964, 1976.) (I)r the direction ~ is clear; for the 
reverse, using (4), we have to show that P R Q =  QI--]P implies PF-]Q = P A  
Q. We know P[--]Q ) P A Q .  On the other hand, if x E P R Q  = QI'-qP, also 
x ~ P  and x E Q  (from 2.3!), i.e., x ~ P A Q .  (6) and (7) are equivalent, 
because P • and Q • commute iff P and Q commute. To prove (8), we 
observe that e Q =  Qe iff e A Q  = PF]Q (4), i.e., El (eQP)=E~- (eQP ). 
This latter equality is true iff PQP is a projection. But, using (8) twice, we 
get (PQt')  2 = POe 'POP = PO(POP) = PQ(QPQ) = e ( O e Q  ) = e ( e Q P )  = 
PQP, so that PQP is in fact a projection. (9) follows readily from (5) and 

P<PI I Q = E o ( P • 1 7 7 1 7 7 1 7 7 1 7 7 1 7 7 1 7 7  

similarly for (10). [] 
From the criteria we see that our connectives, if they are to be 

different from the classical ones, can neither commute nor are P I--IQ and 
P I IQ  the infimum and supremum of P and Q with respect to inclusion. As 
a consequence, sequential algebras do not form a lattice with respect to [-1, 
I I  and <.  Furthermore, we do not have associativity of [--] or II, ~ is not 
transitive, and the rule of contraposition 

p---~ Q = Q • p • 

is not valid (cf. Hardegree, 1976, p. 64). In the following, we want to find 
rules that can serve as generalizations and substitutes for commutativity 
and contraposition, and then investigate associativity. The next result is 
crucial: 

3.2. Theorem. For all projections P, Q in H 
(1) e .Ql-qe= eI-1Q.Q, and by taking adjoints: 
(2) O[--le'P-- 0"1'1--10. 
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Proof of (1). For y ~ H  write Y=Y~+Y2, with yl~Ql-]P and 72 ~ 
Eo(QPQ). Then y l~Q,  i.e., y l=QVl ,  and Qy2EP•  • Hence 
P'Q[]PYI = PYl = PQYl. On the other hand, PFqQQy = P[-qQ.PyI + P[qQ 
�9 Qy2, where the second term is 0 because of Qv2@(P[--1Q) • As P ;~PRQ 
holds, we may write PF-]Q'Qyl = PF-]Q.PQyl, which equals PQvl if we can 
show PQYl E P m Q  or (PQyl ,x)=0 for all x with QPx=O; but (PQYl,X) 
=(yl ,  QPx)=O! A more elegant and sophisticated proof of (3.2) (1) 
follows from 

(P. QPQx,y ) = f(0, U Xd( P" Ex ( QPQ ) x,y ) 

(PQP. Qx,y ) = f(0,1] Xd( Ex (PQP)" Qx,y ) 

since the left-hand terms are identical and the non-zero specta of QPQ and 
PQP coincide, the spectral measures must also be identical, and in particu- 
lar (1) is valid. [] 

With (3.2) we arrive immediately at two laws of contraposition: 

3.3. Corollas. 
(3) QmP--->e • Q--->(PRQ) • or, which is the same: 
(3') (Q~P)• IP • 1 7 7  • 
(4) P--->(QNP) • =PRQ-- .Q • or which is the same: 
(4') P •  •177 IQ • [] 

Proof From the definition of -->; see (2.4). 
(3') and (4') may be written as 

(Y') ( Q n r ) n P  = Q,q(POQ) 

(4-) P O ( Q o P ) = ( P O Q ) O Q  

these two equalities mix commutativity with associativity and are valid 
without further assumptions. Observe, however, that Q N ( Q R P ) =  
QNP, P N ( P ~ Q )  = PRO, s o  that Q ~ Q R P ) = P R ( P N Q )  fff P and Q 
commute! The relationship of QNP to PQP and of PNQ to QPQ is given 
in the following corollary. 

3.4. Corollary. 
(5) PO P = P 'QRP'P 
(6) QPQ= Q'PNQ'Q 
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Proof 

( PQPx,y ) = ( PRQ.PQPx,y ) = ( P.PrTQ.Q Px,y ) 

( P.P.Q[--]P.Px,y ) = ( P.QlqP.Px,y ) 
[] 

Multiplying (1) and (2) by P and Q we obtain equations relating 
PI-IQ and Q[-]P, P[-]Q and PQP, QF]P and QPQ: 

3.5. Corollary. 
(7) P.QITP.P=P~Q.QP 
(8) P.Qr-IP.P = PQ.P[-]Q, and with Corollary 3.4, (5): 
(9) PRQ.QP=PQ.PVqQ=PQP; 
(10) QP.QfTP= Q'PVqQ'Q 
(11) Q[TP.PQ= Q'P[TQ'Q, and with Corollary 3.4, (6): 
(12) O P . O n p =  Qmp.po.  

In the remainder of this section we want to present a simple condition 
under which the law of associativity 

(PRO)I-JR = P[-]( Q r-JR ) 

is valid. Trivially, this is the case if P, Q, R are pairwise commuting. There 
is a weaker condition, however; write 

( P[-]Q )[-]R= E~-( R.PF-]Q ) 

P[-q( Q[--qR ) = E~-( Q[-]R. P ) 

3.6. Theorem. For three projections P, Q, R in H with 

PQ= QP and QR= RQ 

the equality 

which is the same as 

( P[-qQ )FIR = P[7( Q[-]R ) 

(PQ)l--JR = P [--]( QR ) 

holds. 

Proof From PQ= QP, and Theorem 3.1, follows R.PI--]Q= R.PQ= 
RQP; from QR = RQ, and Theorem 3.1, follows Q[-']R.P= QR.P=RQP. 

[]  
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Remark. In Piron (1964, 1976), Piron studies a map which (in our 
notation) is given by 

gPe(Q ) = PI-"IQ 

and he finds for instance that 

(i) dPe~ Q = ~eAQ iff PQ = QP 

(ii) ~pc~Q = f~Qf~p iff PQ = QP 

These results resemble our criteria (4) and (6) of Theorem 3.1 above. If we 
evaluate (ii) at projections R, we see that PQ = QP is equivalent to 

P[-]( Q[qR ) = Q[']( P[-]R ) for all R 

4. SEQUENTIAL EVENTS AND EFFECFIVE QL 

It is interesting that although [-1 and U do not share many of the 
algebraic properties A and V have, they obey almost completely 
Mittelstaedt's (1979) effective quantum logic Qeff, if we replace A and V 
in Qeff formulas by [-1 and II. In the following, we only have to reconsider 
rules of Qefr into which I-'1 and I I  enter. The symbol ,, denotes a meta-and. 

Or 
(1.1) e < e  
(1.2) P<Q,, Q<<.R~P<R 
(2.1) e m o  <<.P 
(2.2) PNQ < Q 

is valid iff P.Q= QP, see Theorem 3.1 (10). 
(2.3) R <P,, R < Q ~ R  <PI--1Q 

is true, since R < Q < P • V Q- 
(3.1) e<e lAQ 
(3.2) Q <<.PL]Q 

is valid iff PQ = QP, from Theorem 3.1 (9) [cf. also (2.2) above]. 
(3.3) P<R, ,  Q < R ~ P I  IQ<R 

is true, since P • A Q < Q < R [cf. also (2.3) above]. 
(4.1) ( P['-]( P---~ Q )) < Q "sequential modus ponens" 

is true: P[--I(P--->Q) = P A ( P  • = P A ( P  •  • V ( P A Q ) ] )  = P 
A ( P  • V [ P A Q ] )  = PA(P--->Q), so that there is no difference from the Qaf 
modus ponens. 

(4.2) e R R  <. Q = P---,R < P ~ Q  
is fulfilled because of P A R  < PI-]R, i.e., the antecedent here is even more 
restrictive than in Q,ff. 

(4.3) P <~ Q---> P ~  P <<.P--~Q 
states the symmetry of physical commensurability or, mathematically 
speaking, the symmetry of commutativity which, of course, is trivial in our 
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Hilbert space setting. [cf. also Theorem 3.1 (3)]. The following rule states 
that commensurability is closed with respect to [7, U and --->: 

(4.4) Q<<P~Q,, R <<.P~R~Q �9 R < P ~ ( Q  �9 R)  with * E{~,I._J,---~} 
This will follow from (5.3) below. In the next three rules, 0 stands for the 
null space, representing falseness (and the full Hilbert space H represents 
truth): 

(5.0) 0<<P 
(5.1) P R P "  <0  

(actually, of course, equality holds); 
(5.2) PVIQ < 0 =  P ~ O  <.e • 

is true, since P A  Q <<-P~Q [cf. (4.2) above]. 
(5.3) P < Q--->P~P • <<. Q---~P • 

which says that PQ= QP implies P ' Q =  QP• i.e., commutativity is 
closed with respect to orthocomplementation. To finish the proof (4.4), 
note that (4.4) is fulfilled for *=---~ (see Qerf); but then the identities 
QLJR = Q • ~ R ,  QVqR = (Q • •177 together with (5.3) yield the desired 
result. 

We know from Theorem 3.1 that Qeff (2.2) and (3.2) are the only rules 
not generally valid for sequential events: they are equivalent to commuta- 
tivity. Hence, in order to obtain a more general propositional calculus than 
Boolean logic, (2.2) or (3.2) must not ho ld- -bu t  then it is exactly this 
commutativity that should be sacrificed in an appropriate quantum logical 
propositional calculus! 

Up to this point our discussion has shown where the introduction of 
N and I I  instead of A and V destroys certain formal properties shared 
by, e.g., lattices. This is certainly a deficit of sequential algebras, and it is 
time to make up for this obvious lack in our syntax. 

The advantages of the sequential calculus are as follows: 
(a) [7 and U have a suggestive interpretation as. "and then" and "or 

then," intuitively modeling a succession in time (see Section 2); 
(b) r]  is a noncommutative connective, which matches quantum 

theory well (see Sections 3 and 4); and, moreover, 
(c) we regain a special but crucial case of (sub-) distributivity which 

permits the objectivation of events like " P  and then Q" in the sense of 
Mittelstaedt (1976). 

This means for instance for Young's two-slit-experiment that we may 
state objectively, i.e., before a measurement has been carried out: 

if a photon is observed at the spot x on the screen behind the two 
slits I and II, it can be inferred that it has passed before either 
through I and then hit the screen at x or through H and then hit the 
screen at x. 

This language is justified by the following. 
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4.1. Theorem . For all projections P, Q in H 

P < Q[-]P + Q • 

more specifically: 

where 

P = Q ~ P  + Q • - l(P, Q) 

I( P, Q) = P • = P J-I-"I(Q • = l(P, Q • 

Proof The two projections on the right-hand side are orthogonal since 
Q[-IP < Q and Q • < Q • so that their sum (which may be written with 
V or [_J instead of + )  is again a projection. From Definition 2.1 we see 

Q[NP + Q • = { xlPQx =0} • + { x[PQ Ix  = o) • 

=(x[PQx=O and PQ• • 

={x[eQx=O and Px=O} • 

= ( Q  •  • A P  •177 = P V  Q[--]P 

=e+ e •  

I( P, Q) = I( P, Q • is easily seen. [] 
There is the following suggestive reading of the implication in (4.1): 

every event P implies either "Q and then P "  or "not-Q and then 
/ ~ , ~  

If P = Px represents the event "photon hits x"  and Q is the event "photon 
passes slit I," this reading rephrases the above objectivity of events 
occurring in Young's two-slit experiment. 

5. OBJECTIVITY AND PROBABILITY OF SEQUENTIAL 
EVENTS 

In this last section we shall make some remarks on the probability 
theory for sequential algebras, and on objectivity. For simplicity, we 
assume the physical system under consideration to be in a pure state 
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represented by a unit vector q0. Then the probability of a property P is 
given by 

w~(e)=<r,  Pr> 

In order for w~0 to be an appropriate probability function on a sequential 
algebra A, it has to fulfill five axioms (cf. Jauch, 1968, p.94; also Piton, 
1964, 1976). 

(W1) For all P E A  
0-<%(P)  < 1 

(W2) w~(0) = 0, w~(n) = 1. 
(W3) For P1 <<-P~-,P1,Pz @A 

w,(PIUP2) = w~(P1) + w~(P2) 
(W4) For PI, Pz ~ A with w~(Pa) = w~(?9 = 1 

follows ww(P1RP2)= 1 
(W5) For P > 0 follows wr(P) > 0, and 

if P§ then %(e)~w~(Q) 
(W1), (W2), and (W5) do not involve [7 or U and are therefore valid as in 
Mittelstaedt's probability theory for Qcw As for (W3), observe that from 
PI <P2 follows 

PxI--JPz = PlY(P1 • AP2) = Pt V P2 = P1 + P2 

and (W4) is obvious from P1[-qP2>>.P1/kP2. Applying (W3) for Px-- 
QI--1P, P2 = Q • Theorem 4.1 gives 

(I) % ( P )  = w,(ORe) + w,(O • %(I(P. O)) 
with I(P,Q)=PII"q(Q[--]P). Here w~(Ql'-le) is the probability that the 
compound event "Q and then P "  will happen--even before any measure- 
ment is made. 

This formulation and formula (I) are not in contradiction to the 
physical fact of interference. To see this, let us write down the usual 
formulas containing interference terms [for the following see also 
Mittelstaedt's (1976) discussion]. 

Let 

w~(P, Q):  = <rp, QPQcp) (5.1) 

be the probability for our system to have the property P after the property 
Q has been stated, if previously the system had been in the state q0. This 
latter interpretation is especially transparent when we write 

w~(P,Q)=(CpQ, P~pQ) with ~pQ=Qrp (5.2) 
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meaning that a measurement or statement of Q changes the state cp into q~Q 
(unnormalized), and after this measurement there is a "conditional" proba- 
bility for P. This is, eum grano salis, the von Neumann-Ltiders interpreta- 
tion (von Neumann, 1955; Ltiders, 1951; see also Bub's discussion, 1977). 
This interpretation takes QPQ, properly normalized by the trace (QPQ), 
as the conditional probability operator for "the probability wo(P) of P, 
given Q." 

In contrast, but not in contradiction, to (5.1) and (5.2) 

w,~( QF]P ) = < ~, Q[-]P~ ) 

is the probability for the compound sequential event " P  after Q"  or "Q 
and then P," if previously the system has been in the state cp. This is 
regardless of whether Q has been stated or not, and consequently we 
should expect 

%( QVqP ) ~ w,( e, o ) (5.3) 

This is in fact true, for Q[-qP "reduces" the Hermitian operator QPQ: 

QPQ = QRP'QPQ = QPQ'Q["IP (5.4) 

(cf. also the end of Section 2). Equation (5.4) is an equality from the 
spectral analysis of operators [see Sz. -Nagy, 1967, formula (3) on page 23]. 

Using our result (6) of Corollary 3.4: 

we see also that 

QPQ= Q'P[TQ'Q 

wQ( e ) = wQ( em9_. ) (5.5) 

i.e., the probabilities of P and of P[-'qQ given Q, are the same. 
The probabilities of (5.1) determine the probabilities w~t(P,Q) of 

interference via formula 
(II) w,~(P) = w,o(P, Q) + w~(P, Q • w~t(P, Q) 

where 

w~nt(p, Q) -- (ep,(OPO " + Q • (5.6) 

can be > 0 o r  < 0 .  
In addition to w~(P, Q) and w~(QfqP), some authors give a probabil- 

ity w~o(QAP ) by means of 

%(QAP)=(~ ,QAPrp)  (5.7) 
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also to the "event" QAP = PA Q. This is then interpreted as a probability 
that the system has the property P, if it had before the property Q and this 
property Q is maintained even after the measurement of the property P. 

From QAP < QPQ we see that 

w~p(QAP) <w~(P, Q) 

and so always 
(III) w~(P) >~w~(QAP)+ w~(Q •  w:t( P, Q) 

To sum up, we have the following situation: in general~ the double 
inequality 

w~(QAP) <wr(P,Q) <<.w~(Q[-qP) 

holds, and if there is one equality sign here for all cp, the other inequality 
becomes an equality, too (Theorem 3.1). In this case, P and Q commute, 
and w:t(P, Q)= 0. Now, in more detail, we have the following. 

(i) If we want to objectivize QAP, we must have (cf. Mittelstaedt, 
1976 p. 159) 

P<QAP+Q• 

which contradicts III, i.e., experimental quantum theory. Therefore, 
(i. 1) do not objectivize (Copenhagen view); 

or 
(i.2) change a n d / o r  restrict the logic (QL); 

or 
(i.3) write and interpret QAP as a sequential event QAP= 

QFq(Q• and replace P<<,QAP+Q• which is invalid, by P <  
QnP+ Q • which is true (Theorem 4.1). 

(ii) Equality (II), which is in accordance with quantum theory, may 
be read in two ways: 

(ii. 1) Copenhagen interpretation, w~(P) is the probability of finding the 
property P after the measuring process, when the transition from the initial 
state to an eigenstate of P has taken place. This probability is at most 
equal to the sum of two probabilities w~(P,Q) and w~(P, Q • which, in 
their interpretation, involve the notion of a prior statement of Q before a 
(conditional) probability can be assigned to P. The remainder w~nt(P, Q), 
the "interference probability," may be < 0? 

(ii.2) Mittelstaedt's interpretation. All possible properties P of a system 
even in QT are simultaneously objective prior to measurement, and w~(P) 
is the "objective" probability before the measurement has been carried out. 
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(ii.3) Comparison of (ii.1) and (iL2). The price to pay for the 
Copenhagen interpretation is a counterintuitive lack of objectivity, and, 
more important, the willingness to accept the rather restrictive and am- 
bivalent Copenhagen dogma which claims, in nuce, that although the 
classical logic remains true, certain rules and theorems (distributivity) are 
not applicable in QT. For Mittelstaedt, in order to avoid difficulties with 
experimental evidence, the probability calculus has to be based on a 
"weaker" logic than Boolean logic, which, for instance, does not admit 
general distributivity. This approach has been criticized from a metalogical 
standpoint (Hiibner, 1964) claiming that logic must not depend on experi- 
ence. Since there exists the exactly opposite view, too, we consider this 
controversy a draw. Although Mittelstaedt's Qeff leads to a quantum 
probability theory quite naturally, the right-hand sides of (II) or (III) 
above have a flavor retained from the Copenhagen view: they still involve 
a prior stating or measuring of Q before property P "has" a probability, so 
that the right-hand terms individually are not fully objectivized. Besides, 
QPQ in (II) is in general not a property (projection) but only an observ- 
able (Hermitian operator), so that (ii.2) seems to contain a tinge of 
inconsequence or, at least, a lack of symmetry. Moreover, since QPQ J- + 
Q • is not always a positive observable, mt w~ (P, Q) cannot be intepreted 
as a probability. 

(iii) The sequential calculus of projections proposed in this paper, 
besides incorporating the essential feature of QT, incommensurability, 
contains the important identity 

P= QITP + Q • I(P,Q) 

where P, QRP, Q• and I(P,Q) all represent properties (i.e., are 
projections) of the system, and they each have a probability before any 
measurement is made. 

We conclude this paper on a note of self-criticism. The logic of 
sequential events as sketched above relies upon the particle picture of 
quantum mechanics on the one hand: only then do Q and Q • both have 
objective meaning. On the other hand, it takes into account the wave 
picture by introducing an interference term in Theorem 4.1. The oc- 
currence of interference, however, contradicts the particle picture; it con- 
tradicts, in other words, the initial building stone of our theory. Even if it is 
conceded that this kind of double-talk reflects an allegedly intrinsic par- 
ticle-wave duality of quantum phenomena, a weakening of Boolean logic 
as done in different ways by Birkhoff and von Neumann, Reichenbach, 
and Mittelstaedt, has a rather more serious methodological flaw: the 
empirical content is weakened, too, since weaker laws decrease the possi- 
bilities of testing and falsifying a theory (this is Feyerabend's criticism). 
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In the present approach, by giving priority to' sequential connectives 
over the logical connectives, we inserted a syntax for "succession" at the 
bottom of the theory, and derived some of its consequences leading to a 
probability semantics. Logic proper thus becomes secondary to our trying 
to capture some essential physical features of quantum theory: incom- 
mensurability, an objectivistic probability structure, and interference, 
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